Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Various metastable ice phases and their complicated transition pathways have been found by pressurization at low temperatures at which slow kinetics and high metastability are easily achieved. By contrast, such diversity is less expected at room or elevated temperatures. Here, using a combination of a dynamic diamond anvil cell and X-ray free electron laser techniques, we demonstrate that supercompressed water transforms into ice VI through multiple freezing–melting pathways at room temperature, hidden within the pressure region of ice VI. These multiple transition pathways occur via a metastable ice (more specifically, ice XXI with body-centred tetragonal structure ($$I\bar{4}2d$$ )) discovered in this study and a metastable ice VII that exists within the pressure range of ice VI. We find that supercompressed water structurally evolves from high-density water to very-high-density water, causing multiple transition pathways. These findings provide an insight to find more metastable ice phases and their transition pathways at elevated temperatures.more » « lessFree, publicly-accessible full text available October 10, 2026
-
A new diamond anvil cell experimental approach has been implemented at the European x-ray Free Electron Laser, combining pulsed laser heating with MHz x-ray diffraction. Here, we use this setup to determine liquidus temperatures under extreme conditions, based on the determination of time-resolved crystallization. The focus is on a Fe-Si-O ternary system, relevant for planetary cores. This time-resolved diagnostic is complemented by a finite-element model, reproducing temporal temperature profiles measured experimentally using streaked optical pyrometry. This model calculates the temperature and strain fields by including (i) pressure and temperature dependencies of material properties, and (ii) the heat-induced thermal stress, including feedback effect on material parameter variations. Making our model more realistic, these improvements are critical as they give 7000 K temperature differences compared to previous models. Laser intensities are determined by seeking minimal deviation between measured and modeled temperatures. Combining models and streak optical pyrometry data extends temperature determination below detection limit. The presented approach can be used to infer the liquidus temperature by the appearance of SiO2 diffraction spots. In addition, temperatures obtained by the model agree with crystallization temperatures reported for Fe–Si alloys. Our model reproduces the planetary relevant experimental conditions, providing temperature, pressure, and volume conditions. Those predictions are then used to determine liquidus temperatures at experimental timescales where chemical migration is limited. This synergy of novel time-resolved experiments and finite-element modeling pushes further the interpretation capabilities in diamond anvil cell experiments.more » « less
-
Abstract The thermal conductivity of bridgmanite, the primary constituent of the Earth's lower mantle, has been investigated using diamond anvil cells at pressures up to 85 GPa and temperatures up to 3,100 K. We report the results of time‐domain optical laser flash heating and X‐ray Free Electron Laser heating experiments from a variety of bridgmanite samples with different Al and Fe contents. The results demonstrate that Fe or Fe,Al incorporation in bridgmanite reduces thermal conductivity by about 50% in comparison to end‐member MgSiO3at the pressure‐temperature conditions of Earth's lower mantle. The effect of temperature on the thermal conductivity at 28–60 GPa is moderate, well described as , whereais 0.2–0.5. The results yield thermal conductivity of 7.5–15 W/(m × K) in the thermal boundary layer of the lowermost mantle composed of Fe,Al‐bearing bridgmanite.more » « less
An official website of the United States government
